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Introduction

What is the adjoint?

• It’s a version of our model that propagates ‘information’
backwards in time

Why do we need it?

• 4DVAR

• Observation impact calculations

• Sensitivity studies

• Singular vector calculations

• Helps us understand the model
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Derivation of the linearized model

We have a, most likely, nonlinear model,

yi = m (x1, x2, ..., xj) ,

where x and y are discrete model variables at an old and new time.

From a DA perspective we may ask a couple of questions:

1. How does yi change with respect to xj? If we make
perturbations to xj how do they affect yi? Suppose xj has
some error. How does that error grow?

2. We’re analyzing something about yi . This could be an error or
just some interesting physical behavior. What specifically was
it about xj that led to this?
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Derivation of the linearized model

We’re trying to get a handle on perturbations so we ‘linearize’
model variables by separating into reference and perturbation parts,

xj = x rj + x ′j .

The output perturbation can be approximated by Taylor expansion,

y ′i = m
(
x r1 + x ′1, x

r
2 + x ′2, ...

)
−m (x r1 , x

r
2 , ...),

= ((((
(((m (x r1 , x
r
2 , ...) +

∂y ri
∂x1

x ′1 +
∂y ri
∂x2

x ′2 + ...−(((((
((

m (x r1 , x
r
2 , ...) ,

y ′i =
∑
j

(
∂yi
∂xj

)r

x ′j .

The above equation is the tangent linear model (TLM) and
gives an approximation for the growth of perturbations x ′j .
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Derivation of the linearized model

The TLM is a useful tool but it doesn’t help us with our second
question! To get somewhere towards doing so we first simplify
things by introducing a scalar measure of the outputs, J = J [y (x)].

Using the Taylor series again,

J ′ =
∑
i

∂J r

∂yi
y ′i ,

or,

J ′ =
∑
j

∂J r

∂xj
x ′j .

The two estimates are equivalent when both functions are linear.



Derivation of the linearized model

The latter equation is of greater interest since it depends on the
perturbation inputs.

Since J is a function of a function we can use the chain rule to
expand,

∂J r

∂xj
=
∑
i

(
∂yi
∂xj

)r ∂J r

∂yi
.

Notice how powerful this equation is on its own. Before even using
it to estimate J ′ we can integrate a forecast time gradient
(sensitivity) back to beginning time.



TLM vs. adjoint
The TLM sums ∂yi/∂xj over j while this new model sums over i .
Let’s adopt a vector notation to compute all y ′i or ∂J/∂xj ,

Mi ,j =
∂yi
∂xj

.

For the TLM we sum over the columns while for the new model we
sum over the rows. In standard matrix multiplication we sum over
columns. The TLM is fine,

y′ = Mx′,

but for the new model we have to transpose the matrix (also
known as taking the adjoint!),

∂J

∂x
= M>

∂J

∂y
.



TLM vs. adjoint

The matrix M is known as the Resolvant of the TLM or Jacobian
of the nonlinear model. The model which maps sensitivities
backwards is known as the adjoint model because it uses the
adjoint of the TLM.

We generally use a compact notation for the adjoint model,

x̂ = M>ŷ.

Jointly the TLM and adjoint are often referred to as the linearized
version of the model.



TLM vs. adjoint

Both the TLM and adjoint depend on the model gradient. They
pick out the structures that evolve along the steepest gradients,
either forwards or backwards.

1. The tangent linear model maps a specific perturbation onto all
forecast aspects. This allows us to investigate the first
question we posed.

2. The adjoint maps a specific sensitivity backwards with respect
to all possible perturbations. This allows us to investigate the
second question.

The adjoint is generally more useful but the TLM plays a crucial
role in validating the linearized model.



Assumptions that we’re making

All of this is based on the Taylor series expansion. So what
assumptions have we actually made?

• The Taylor series is a good approximation when |x ′| is ‘small’.

• The nonlinear model is continuous and is differentiable.

For most modern atmospheric models this is not the case:

• In actual applications x ′ can be large, e.g. the specific
humidity analysis increment.

• Unresolved processes are not represented with continuous
equations.

The adjoint is useful enough to try and overcome these issues!
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1D advection example

One dimensional advection of a tracer q = q(x , u, t)

∂q

∂t
+ u

∂q

∂x
= 0

The important variables are u and q. Linearize,

∂q′

∂t
+ u′

∂qr

∂x
+ ur

∂q′

∂x
+
�
�
�

u′
∂q′

∂x
= 0

Discretize

q′j ,n+1 = q′j ,n −∆t

(
u′j ,n

qrj+1,n − qrj ,n
∆x

+ urj ,n
q′j+1,n − q′j ,n

∆x

)

We don’t derive the adjoint equation but rather build from code.



Steps for coding success

• Make a list of ‘dependent’ variables, here q and u.

• Write (re-write) your model so all calculations dependent on
these variables are within a module.

• Only arguments should be dependent variables and constants.

• Do things in double precision within modules if possible.

• Minimize your use of intrinsic functions.

• Write the tangent linear model first.

• Don’t write the adjoint until you’ve tested the TLM.



The nonlinear model

subroutine FirstOrderAdvection(qr,ur,dx,dt,Nx,Nt)

aimplicit none

ainteger, intent(in) :: Nx, Nt

areal(8), intent(in) :: dx, dt

areal(8), intent(inout) :: qr(Nx), ur(Nx)

ainteger :: n,j

areal(8) :: qnewr(Nx)

aqnewr = 0.0

ado n = 1,Nt

aaaado j = 1,Nx

aaaaaaaif (j .eq. 1) then

aaaaaaaaaaqnewr(1) = qr(1) - ur(j)*dt/dx*(qr(1) - qr(Nx))

aaaaaaaelse

aaaaaaaaaaqnewr(j) = qr(j) - ur(j)*dt/dx*(qr(j) - qr(j-1))

aaaaaaaendif

aaaaenddo

aaaaqr = qnewr

aenddo

end subroutine



The Tangent Linear Model

subroutine FirstOrderAdvectionTLM(qr,ur,qp,up,dx,dt,Nx,Nt)

a...declarations...

ado n = 1,Nt

aaaado j = 1,Nx

aaaaaaaif (j .eq. 1) then

aaaaaaaaaaqnewr(1) = qr(1) - ur(j)*dt/dx*(qr(1) - qr(Nx))

aaaaaaaaaaqnewp(1) = qp(1) - dt/dx*( ur(1)*(qp(1) - qp(Nx)) &

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa+ up(1)*(qr(1) - qr(Nx)) )

aaaaaaaelse

aaaaaaaaaaqnewr(j) = qr(j) - ur(j)*dt/dx*(qr(j) - qr(j-1))

aaaaaaaaaaqnewp(j) = qp(j) - dt/dx*( ur(j)*(qp(j) - qp(j-1)) &

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa+ up(j)*(qr(j) - qr(j-1)) )

aaaaaaaendif

aaaaenddo

aaaaqp = qnewp

aenddo

end subroutine

This isn’t the best way to write TLM code...
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The Tangent Linear Model

Order is often important!

qnewr(j) = qr(j) - ur(j)*dt/dx*(qr(j)-qr(j-1))

qnewp(j) = qp(j) - dt/dx*(ur(j)*(qp(j)-qp(j-1)) + up(j)*(qr(j)-qr(j-1)))

Get used to writing as ...

qnewp(j) = qp(j) - dt/dx*(ur(j)*(qp(j)-qp(j-1)) + up(j)*(qr(j)-qr(j-1)))

qnewr(j) = qr(j) - ur(j)*dt/dx*(qr(j)-qr(j-1))



Rules for coding the adjoint

• Create a copy of the TLM module.

• Strip out all non-perturbation lines.

• Reverse the order of everything (including reversing loops).

• For each line:
• For every perturbation variable that occurs on the RHS make a

new line with that variable on the LHS
• Set it equal to itself with a plus, e.g. qp(j) = qp(j)+
• Include the original LHS variable and multiply by the coefficient

of the original RHS variable, e.g.
qp(j) = qp(j) + qnewp(j) ∗ (−ur(j) ∗ dx/dt)

• If a variable is overwritten do not add to itself.

• Order is important!



The adjoint model

subroutine FirstOrderAdvectionADM(qr,ur,qp,up,dx,dt,Nx,Nt)

a...declarations...

ado n = Nt,1,-1

aaaaqnewp = qp

aaaado j = Nx,1,-1

aaaaaaaif (j .ne. 1) then

aaaaaaaaaaqp(j) = qp(j) + (1 - dt/dx*ur(j)) * qnewp(j)

aaaaaaaaaaqp(j - 1) = qp(j - 1) + dt/dx*ur(j) * qnewp(j)

aaaaaaaaaaup(j) = up(j) + dt/dx*(qr(j) - qr(j-1))*qnewp(j)

aaaaaaaaaaqnewp(j) = 0

aaaaaaaelse

aaaaaaaaaaqp(1) = qp(1) + (1 - dt/dx*ur(1)) * qnewp(1)

aaaaaaaaaaqp(Nx) = qp(Nx) + dt/dx*ur(1) * qnewp(1)

aaaaaaaaaaup(1) = up(j) + dt/dx*(qr(1) - qr(Nx))*qnewp(1)

aaaaaaaaaaqnewp(1) = 0

aaaaaaaendif

aaaaenddo

aenddo

aend subroutine



Adjoint: check-pointing vs re-calculation

Check-point the trajectory (increases memory use):

First run though nonlinear code saving what you later need:

ado n = 1,Nt

aaaaqtraj(n,:) = qr

aaaautraj(n,:) = ur

aaaado j = 1,Nx

aaaaaaa...

aaaaenddo

aenddo

As you integrate the adjoint read back in :

ado n = Nt,1,-1

aaaaqr = qtraj(n,:)

aaaaur = utraj(n,:)

aaaado j = Nx,1,-1

aaaaaaa...

aaaaenddo

aenddo



Adjoint: check-pointing vs re-calculation

Re-compute the trajectory within adjoint loop (increases
computational time):

subroutine FirstOrderAdvectionADM(qr,ur,qp,up,dx,dt,Nx,Nt)

a...declarations...

ado n = Nt,1,-1

aaaado n1 = 1,n

aaaaaaado j = 1,Nx

aaaaaaaaaa...

aaaaaaaenddo

aaaaenddo

aaaado j = Nx,1,-1

aaaaaaa...

aaaaenddo

aenddo

aend subroutine

For complex models you need a combination of the two techniques.



Auto differentiation

Many great tools exist that can save a lot of pain when coding
TLM and adjoints, e.g.

• Tapenade (http://tapenade.inria.fr:8080/tapenade/)

• Taf (http://www.fastopt.de/)

• OpenAD

Pass them a subroutine and they return working code! Some
considerations though:

• Code not usually the most efficient it can be.

• They cannot tell you if you should differentiate.
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Validation of the TLM

It is crucial to validate the linearized model carefully when
devloping code. This is done using the TLM and verifying that,

lim
x′→0

m(x + x′)−m(x)

Mx′
= 1.

But really what we want to look at is:

m(x + x′)−m(x) vs. Mx′,

for realistic x′. Look at the correlations between the two, root
mean squared error and the root mean square of each.



Validation of the TLM

Note that

lim
x′→0

m(x + x′)−m(x)

Mx′
= 1.

will actually fail miserably for most modern atmospheric models
that include physics!

This is because under switches, even though you make the
denominator infinitesimal, the numerator will remain finite. So
instead the result can tend to infinity.



Validation of the TLM

corr
(
m(x + x′)−m(x),Mx′

)
.
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Validation of the adjoint

Once you are happy with the TLM performance, the correct coding
of the adjoint is confirmed using a dot product test.〈

y′, ŷ
〉
−
〈
x′, x̂

〉
= 0

The result wont be zero but something on the order allowed by
precision.

• O(10−15) for double precision is acceptable

• O(10−9) for single precision is acceptable

If your result is larger than this you likely have a bug somewhere.



Validation for sensitivity studies

For sensitivity studies you also have to check the linearity of J.

This is done by comparing the nonlinear J ′ with the linearized
approximation.∑

j

∂J r

∂xj
x ′j vs J(y(x r + x ′))− J(y(x r ))



Outline

• Introduction

• Derivation of the linearized model

• How to write and adjoint model

• Validation of the linearized model

• Practical issues

• Sensitivity examples

• Optimal perturbations



Real World example

Consider the 1D advection problem again,

∂q

∂t
+ u

∂q

∂x
= 0.

But now with constant wind, u′ = 0

∂q′

∂t
+ ur

∂q′

∂x
= 0.

The problem is exactly linear, so long as we choose a linear scheme
then whatever perturbation we choose the linearization is exact.



Advection of the reference part
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Advection of a perturbation
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What causes all this growth?

When we’re encountering problems one way to figure out what’s
going on is to compute the Jacobian. 2D example,(

ẏ1
′

ẏ2
′

)
=

(
M1 M2

M3 M4

)(
x ′1
x ′2

)
=

M1x
′
1 + M2x

′
2

M3x
′
1 + M4x

′
2

Set x ′1 = 1 and x ′2 = 0,

M1 = ẏ1
′

M3 = ẏ2
′

Repeat, setting each element of x to 1 and running the TLM to
obtain corresponding column of the Jacobian.



Stability analysis
Having the Jacobian lets us examine the gradients of the model,
which is very useful. It also allows for stability analysis,

λq = Mq

where λ are the eigenvalues of M.
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Stability analysis

When we see an eigenvalue spectrum like this it immediately tells
us that this scheme should not be linearized, and has saved us the
bother of writing the adjoint.

Fortunately, the reasons that linear schemes are not used for
advection are not so important when it comes to transporting
perturbations and sensitivities.

In this instance the nonlinear model and linearized model will be
based on different equations.



Cloud liquid water perturbation in GEOS-5
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Problems with physics

These issues with advection aren’t due to the equations but the
scheme that is chosen.

For the physics the issues are often due to the equations
themselves.

Below shows the equation for cloud fraction in GEOS-5,

CLS =


0, if qs > qT + σ
qT+σ−qs

2σ , if qT − σ < qs ≤ qT + σ

1, if qs ≤ qT − σ.

When linearized this produces cloud fraction perturbations O(103)!



Problems with physics

Now we have to do some analysis and make a decision on how to
proceed.

1. Do we try to find a new way of computing cloud fraction that
is more linear and does not support rapid perturbation growth?

or,

2. Do we try to figure out, based on the trajectory, when the
equation will cause a problem.



1. A new scheme (a.k.a. the ECMWF method)

Advantages:

• The new scheme can be fast and so suited to 4DVAR.

• Designed from the ground up means reliable results.

Disadvantages:

• Requires lots of expert help.

• Tuning new physics schemes is very tedious.

• The nonlinear model will have different behavior from the
linearized model.



2. Scheme analysis (a.k.a. the GMAO method)

Advantages:

• Keeps the linearized model close to the nonlinear model.

• Avoids the need for too much expert help.

• Much faster to develop.

• We learn much as we go and find bugs.

Disadvantages:

• Slower to run.

• Always the chance that you miss something.



3. Do both

Depending on application the ideal situation could be to analyze
the behavior but also have an alternative scheme to use when we
notice a problem.



Correlation with trajectory

Start by making plots of the problem perturbation against aspects
of the trajectory.
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Sometimes this can work incredibly well and give you a way to
control problems. It can even speed the code up.



Correlation with trajectory

Other times you can exhaust all aspects of the trajectory and
various combinations of trajectory values without a satisfactory
solution.

But remember that there is always the Jacobian. You can isolate
the part of the scheme that causes you a problem and put a
Jacobian ‘wrapper’ around the code. You can try correlating
elements of the Jacobian against the perturbations or even
compute eigenvalues. If you turn off the code when large
eigenvlaues occur you’ll avoid large growth.



A new model (the simple way)

As complex as the model sometimes seems it is not always the
case.
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A new model (the simple way)

In this situation we can replace,

CLS =


0, if qs > qT + σ
qT+σ−qs

2σ , if qT − σ < qs ≤ qT + σ

1, if qs ≤ qT − σ.

with

CLS =


0, if RH < c1
RH

c2−c1 −
c1

c2−c1 , if c1 ≤ RH ≤ c2

1, if RH > c2.

and get almost the same result. This function is piecewise linear
and we always know the gradient. We tune one value until results
are satisfactory.



Problems with physics

Most likely no perfect solution is possible so pick the lesser of the
multiple evils!

• Unrealistically large perturbation growth has to be avoided.

• Piecewise linear functions have problems at the switches.

• But smoothing introduces steeper gradients.

It is interesting to look at physics schemes in this way. Use of
steep gradients and switches implies a certain confidence in the
scheme’s ability to ‘determine’ the cloud fraction. But can it
fundamentally achieve that? And should that really be the aim?
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North East blizzard of January 2015

This case presented some interesting forecasting challenges.
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Initialize the adjoint with energy, surface pressure or circulation in
the box.



North East blizzard of January 2015
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Sensitivity to dust example

Using the adjoint metric centered over the forming hurricane Helene we
examine sensitivity to dust. Figure shows dust and sensitivity at 800hPa.
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In regions of negative sensitivity a positive change to dust would reduce
surface pressure in the box (increase the strength of the storm).



Outline
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Optimal perturbations

The general idea is that we want to maximize,

J ′ =
∑
j

∂J r

∂xj
x ′j

subject to a constraint, chosen as,

C =
1

2

∑
j

wjx
′2
j

Could also minimize C subject to J ′. This is Lagrange multiplier
problem, which has the solution,

I =
∑
j

∂J r

∂xj
x ′j + λ

1

2

∑
j

wjx
′2
j − C





Optimal perturbations

Effectively we look for the location where gradient vectors of the
function and the condition are parallel by differentiating I and
setting equal to 0.

∂J r

∂xj
− λwjx

′
j = 0

The optimal perturbation is,

x ′j =
λ

wj

∂J r

∂xj

The constant λ results from the two parallel gradients generally
having different magnitudes. It is calculated by plugging x ′j back
into the constraint. The weights wj are required to account for
uneven grid spacing and mass changes with height.



North East blizzard optimal perturbation
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SLP difference after optimal perturbation
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Conclusions

• The adjoint and TLM are very useful tools, used in a wide
variety of applications (e.g. see next lecture).

• The derivation uses relatively straightforward principles.

• Development can be tedious but isn’t difficult and automatic
tools can help significantly.

• Care is required to understand the underlying behavior of the
model but this in itself is very useful and we learn a lot.

• Looking at adjoint sensitivity can provide basic understanding
of atmospheric behavior as well as informing us how to
improve data assimilation.


